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Abstract

A fixed–free interface component mode synthesis method has been developed for carrying out rotordynamic analysis

with the gyroscopic effects being considered. This hybrid model has been developed to combine the advantages of the fixed

interface method, known popularly as the Craig–Bampton approach and the free interface method, known as the

Craig–Chang technique. It is shown in the paper that the proposed fixed-free interface method is able to predict the whirl

frequencies accurately (like the Craig–Bampton method) and at the same time predict the unbalance response accurately

(like the Craig–Chang approach). The proposed technique has been validated for two systems. (a) a cantilever rotor with a

heavy disc at its free end and (b) a typical twin-spool aero-engine rotor-bearing configuration. This technique is also

suitable for nonlinear analysis, when a squeeze film damper is present.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Rotor dynamic analysis is a complex task particularly when it is carried out on a rotor-bearing system such
as multi-spool rotors of aero-engines, which have two or more rotors spinning coaxially and supported on
comparatively flexible supporting case structure. Additional features to be included in the analysis, as
compared to conventional structural dynamic analysis, are the gyroscopic effects due to the precession of
rotors, which makes the analysis complex due to its influence on the natural frequencies of the rotor system. In
addition, the size of the problem is a cause of concern for the analyst when transient analysis is to be
considered.

The development of an aero-engine is a multidisciplinary task and many of its components are developed
simultaneously by different departments, which carry out respective dynamic analysis of their components.
Thus the wealth of data available with the concerned divisions from the dynamic analyses carried out by them
on individual components cannot be utilized, if the entire rotor-bearing-casing system is analyzed at once.

In order to address and overcome all the above challenges, the component mode synthesis (CMS) is a
natural choice for the rotor dynamics analyst. CMS enables analysis to be carried out on different individual
components by various departments with necessary reduction of problem size at each stage either using modal
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

[A], [B] state matrices
[C], [E] constraint and elastic flexibility matrices
{p}, {q} generalized coordinates vector, indepen-

dent generalized coordinates vector
Ip polar moment of inertia of the rotor

component
L, T, V lagrangian, kinetic and strain energy
{f}, {u}, f _ug force, displacement and velocity

vectors
[P], [R] mode acceleration and reaction force

matrices
[S] selection matrix
[m], [g], [k] mass, gyroscopic and stiffness ma-

trices
[t] transformation matrix
{y} state-space vector of displacement and

velocity
[F] modal matrix of component with bound-

ary degrees-of-freedom fixed
[L] diagonal matrix of eigenvalues of com-

ponent with boundary degrees-of-free-
dom fixed

[Ca], [Cc] constraint mode matrix, attachment
mode matrix

{s} lagrange multipliers vector

Subscripts

ii, ij, ji, jj interior–interior, interior–boundary,
boundary–interior, boundary–boundary
partitions

i, j interior and boundary degrees-of-free-
dom

d, l dependent and independent generalized
coordinates

dd, dl dependent–dependent, dependent–inde-
pendent partitions of constraint matrix

wa, ra,aa complementary, rigid-body and attach-
ment coordinates

Superscripts

r component index
1, 2 sub-rotor 1 and 2 for example case
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displacement or mode acceleration methods and build a final model of highly reduced size. This also enables
the analyst to perform corrective or design modifications at the component level to achieve desired dynamic
behavior without having to wait for the analysis of the final system. This reduces the number of design
iterations.

A good review by Nelson [1] is available on various modal reduction techniques including CMS developed
for rotordynamic analysis. Comparative analysis of all modal synthesis techniques, such as CMS, branch
mode analysis, component mode substitution and coupled free–free component modes, developed for dynamic
analysis of large structures has been reported. Hurty et al. [2] recommend the fixed–fixed CMS of Craig and
Bampton as the most trustworthy method for all vibration analyses. The Craig and Bampton [3] method was
originally developed for structural dynamics by Hurty [4]. The Craig and Bampton method gives a more
accurate eigensolution for a given number of component modes. Craig and Chang [5] developed a free
interface CMS, in which the residual attachment modes were used to account for the flexibility of all modes.
This method has been shown to produce better results when applied to structures having large number of
attachment or boundary coordinates. Li and Gunter [6] have successfully applied free interface CMS to large
rotor systems. However in this method, interconnecting elements are modeled as linear elastic elements and
added to the final formulation using normal modes. Glasgow and Nelson [7] have extended the fixed interface
CMS method to examine the stability of rotor systems.

In this paper, fixed–free interface CMS has been developed for rotordynamic analysis, including the
gyroscopic effect. This hybrid method combines the advantages of the Craig and Bampton [3] and Craig and
Chang [5] approaches. In this method, the final reduced equations of motion are obtained using Lagrange’s
equations based on Lagrange multipliers to incorporate constraint equations. The given rotor is divided into
sub-rotors and the boundary coordinates attached to one sub-rotor are fixed and corresponding boundary
coordinates attached to adjoining sub-rotor are free. Normal modes obtained, based only on the inertia and
stiffness matrices of sub-rotors, are used for modal reduction of all sub-rotor matrices including the
gyroscopic matrix. In order to verify the accuracy of results of whirl frequencies, which are spin dependent due
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to the gyroscopic effect, a cantilever beam with a heavy disc at the free end is considered. This example is
considered as the gyroscopic effect will be significant. This rotor has been analyzed for whirl frequencies using
a full model finite element method (FEM). These results are compared with the results obtained from CMS
using normal modes based only on the inertia and stiffness matrices. Further, results are also obtained using
Meirovitch [8] formulation, in which the modal matrix for modal truncation is obtained at every spin speed
due to the presence of the gyroscopic matrix.

After this validation, the above rotor has been analyzed for both whirl frequency and unbalance response
using fixed–free interface methods and the results obtained are compared with the results obtained using full
finite element model, fixed interface (Craig and Bampton) and free interface (Craig and Chang) methods.
Finally, the present method has been applied to a typical twin-spool aero-engine model and the results once
again compared with the results obtained using full finite element model, Craig and Bampton and Craig and
Chang methods. In this model, the inter-shaft bearing used to couple both the rotors is modeled as an elastic
member and forms part of the low pressure (LP) sub-rotor, whose coordinates are retained as physical
coordinates, so that any nonlinear mechanism such as SFD associated with these coordinates could be
analyzed later in isolation to the system linear coordinates, which is one of the attractive features of this
present formulation.

2. Fixed–free CMS formulation for rotordynamics

In this formulation, the junction coordinates attached to one component are fixed and corresponding
junction coordinates attached to the other component are free. The modes involved in this formulation are
basically classified into normal modes, constraint modes and attachment modes.

The equation of undamped motion of a rotor system is given by

m½ � €uðtÞ
� �

�X g½ � _uðtÞ
� �

þ k½ � uðtÞ
� �

¼ f ðtÞ
� �

, (1)

where [m], [g], [k], {u(t)}and {f(t)} are the mass, gyroscopic and stiffness matrices, displacement and force
vectors, respectively, with X being the rotor angular speed. The given system is divided into many sub-
systems/components, whose coordinates are partitioned into interior {ui} and boundary or junction
coordinates {uj} as given by

uf gT ¼ uif g
T uj

� �Th i
. (2)

The junction coordinates are shared with other substructures. Accordingly the equation of motion of a
component is expressed in the partitioned form as

mii½ � mij

� �
mji

� �
mjj

� �
" #

€uif g

€uj

� �( )
�X

gii

� �
gij

� �
gji

� �
gjj

� �
" #

_uif g

_uj

� �( )
þ

kii½ � kij

� �
kji

� �
kjj

� �
" #

uif g

uj

� �( )
¼

f i

� �
f j

n o
8<
:

9=
;. (3)

If the component is completely constrained at its junctions, only interior degrees-of-freedom (dof) are
participating in the eigenvalue analysis. Therefore Eq. (3) can be expressed in terms of interior coordinates as:

mii½ � €uif g �X gii

� �
_uif g þ kii½ � uif g ¼ 0f g. (4)

Expressing the above equation in first-order form using state-space vector y
� �T

¼ _uif g uif g
� �T

one gets

A½ � _y
� �
þ B½ � y

� �
¼ 0f g; A ¼

mii½ � 0½ �

0½ � kii½ �

" #
; B ¼

gii

� �
kii½ �

� kii½ � 0½ �

" #
. (5)

The above equation needs to be solved for every spin speed to obtain state vectors, which is a computationally
intensive effort. In order to overcome this, one assumes that the state vectors or eigenvectors do not
appreciably change with rotor spin speed. The validity of this assumption will be demonstrated later using a
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simple cantilever beam with a heavy disc at its free end. In this system the gyroscopic effects are usually quite
significant. In general, Eq. (2) can be transformed as

uf gr ¼ t½ �r p
� �r

, (6)

where [t]r is the transformation matrix and {p}r is the vector of generalized coordinates for the rth component,
with r ¼ 1,2,y,n. The system equations of motion are obtained using Lagrange’s equation with Lagrange
multipliers,{s}, to enforce the constraint equations. The constraint equations are as follows:

uf g1j ¼ uf g2j ¼ ::: ¼ uf grj (7)

which in matrix form can be written as

½C� p
� �
¼ 0f g. (8)

The Lagrangian for the system is then given by

L ¼ T � V þ sf gT C½ � p
� �

, (9)

where the kinetic energy T and strain energy V of the system are obtained by summing the kinetic and strain
energies of all the components [9].

T ¼
Xn

r¼1

1

2
_uf grT m½ �r _uf gr �

1

2
X _uf grT g½ �r uf gr þ

1

2
IPX2

� �
; V ¼

Xn

r¼1

1

2
uf grT k½ �r uf gr. (10)

Substituting Eq. (6) into Eq. (10), one gets T and V in the generalized coordinates and substituting these into
Eq. (9), yields

L ¼
Xn

r¼1

1

2
_p
� �rT

t½ �rT m½ �r t½ �r _p
� �r

�
�

1

2
X _p
� �rT

t½ �rT g½ �r t½ �r p
� �r

þ
1

2
IPX2

�
1

2
p
� �rT

t½ �rT k½ �r t½ �r p
� �r

þ sf grT C½ �r p
� �r

�
. ð11Þ

The above equation is reduced and expressed for the whole system as

L ¼
1

2
_p
� �T

M½ � _p
� �
�

1

2
X _p
� �T

G½ � p
� �
þ

1

2
IPX2

�
1

2
p
� �T

K½ � p
� �
þ sf gT C½ � p

� �
. (12)

The system equations of motion can now be obtained using Lagrange’s equation:

d

dt

qL

q _ps

� �
�

qL

qps

¼ Qs. (13)

Differentiating Eq. (12) with respect to f _pg and then differentiating with respect to time, t, yields for the entire
system:

qL

q _p
� � ¼ M½ � _p

� �
�

1

2
X G½ � p

� �
;

d

dt

qL

q _p

� �
¼ M½ � €p

� �
�

1

2
X G½ � _p

� �
. (14)

Differentiating Eq. (12) with respect to {p}, yields:

qL

q p
� � ¼ � 1

2
X G½ �T _p

� �
� K½ � p

� �
þ C½ �T sf g. (15)

Substituting Eqs.(14) and (15) into Eq. (13), one gets

M½ � €p
� �
�X G½ � _p

� �
þ K½ � p

� �
¼ C½ �T sf g þ t½ �T f½ �. (16)
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Let {p} be partitioned into dependent coordinates {pd} and independent co-ordinates {pl}, which will be
retained in the final formulation, and substituting into Eq. (8), one gets

Cdl½ � Cdd½ �
� � pl

pd

( )
¼ 0f g; pd

� �
¼ � Cdd½ ��1 Cdl½ � pl

� �
; pl

� �
¼ q
� �

. (17)

Eq. (17) can be used to rewrite Eq. (8) as

C½ �
I ll

�C�1dd Cdl

" #
q
� �
¼ 0f g; C½ � S½ � q

� �
¼ 0f g. (18)

Since q
� �

a 0f g this implies that

½C�½S� ¼ ½0�. (19)

Comparing Eq. (8) and (18), one gets

p
� �
¼ S½ � q

� �
. (20)

Substituting the above equation into Eq. (16) and pre-multiplying with [S]T one gets

S½ �T M½ � S½ � €q
� �
�X S½ �T G½ � S½ � _q

� �
þ S½ �T K½ � S½ � q

� �
¼ S½ �T C½ �T sf g þ S½ �T t½ �T f

� �
. (21)

Substituting Eq. (19) into Eq. (21), one gets the final reduced order equation of motion for a given system as

M½ �S €q
� �
�X G½ �S _q

� �
þ k½ �S q

� �
¼ S½ �T t½ �T f

� �
¼ Ff gS. (22)

The above equation forms the basis for rotor dynamic analysis of rotor-bearing system.

2.1. Fixed boundary sub-rotor problem formulation

In this sub-rotor (rotor 1), the boundary or junction coordinates are fixed. The displacements of the interior
coordinates are the summation of the displacements relative to fixed conditions at the junction, obtained from
the mode shapes (with junctions fixed) and the displacements due to displacement of the junction points,
included in the form of constraint modes. Normal modes are obtained from the eigenvalue analysis
(symmetric matrices):

k1
€u

� �
�X2 m1

ii

� �� �
U½ � ¼ 0½ �. (23)

The modes are normalized with respect to mass and stiffness matrices to obtain

U½ �T m1
ii

� �
U½ � ¼ I ; U½ �T k1

ii

� �
U½ � ¼ L ¼ diag o2

n

� �
, (24)

where [U] is the modal matrix whose columns are the component normal modes and on is the nth natural
frequency. Further, the normal modes are truncated, including only the required numbers of modes in order to
reduce the size of the problem without compromising on the accuracy of the results. The truncated set of
normal modes is denoted by [Uk] (kept normal modes) and is usually much smaller than the original number
of modes.

A constraint mode is defined by statically imposing a unit displacement on one of the physical coordinates
in the j set and zero displacement on the remaining coordinates (see Eq. (3)):

k1
ii

� �
k1

ij

h i
k1

ji

h i
k1

jj

h i
2
64

3
75 Wij

� �
I jj

� �( )
¼

0½ �

f jj

h i8<
:

9=
;. (25)

From the first row of the above equation one obtains Wij

� �
¼ � k1

ii

� ��1
k1

ij

h i
and the constraint mode matrix is

given by

Wc½ � ¼
Wij

� �
I jj

� �( )
. (26)
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Thus the displacement vector and reduced rotor sub-matrices can be expressed as:

u1
i

� �
¼ Uk½ � p1

i

� �
þ Wc½ � p1

j

n o
;

u1
i

� �
u1

j

n o
8><
>:

9>=
>; ¼

Uik½ � Wij

� �
0 I jj

� �
2
4

3
5 pi

� �
pj

n o
8><
>:

9>=
>; ¼ ½t1� p1

� �
,

k1s
� �

¼ t1
� �T

k1
� �

t1
� �

; m1s
� �

¼ t1
� �T

m1
� �

t1
� �

; g1s
� �

¼ t1
� �T

g1
� �

t1
� �

. ð27Þ

2.2. Free boundary sub-rotor problem formulation

The boundary coordinates of this sub-rotor (rotor 2) are kept free. In this formulation, the displacement
transformation matrix comprises free interface normal modes and attachment modes with necessary restraint
against rigid body motion. The stiffness matrix is divided into three sets, which are ‘r’ (rigid body coordinates
which provide restraint against rigid body motion), ‘a’ (attachment or juncture coordinates) and ‘w’
(complementary coordinates). The attachment modes [Wa] are defined by applying unit forces to the a set as
given by

k2
ww

� �
k2

wr

� �
k2

wa

� �
k2

rw

� �
k2

rr

� �
k2

ra

� �
k2

aw

� �
k2

or

� �
k2

oo

� �
2
664

3
775

Wwa½ �

0ra½ �

Waa½ �

8><
>:

9>=
>; ¼

0wa½ �

Rra½ �

Iaa½ �

8><
>:

9>=
>;; k2

� �
Wa½ � ¼ f

� �
. (28)

Instead of attachment modes, inertia relief attachment modes are included based on the mode acceleration
approach. Inclusion of the inertia relief attachment modes considerably improves the accuracy by accounting
for the influence of the deleted modes. Residual attachment modes have been employed in CMS by Craig and
Chang [5]. The sub-rotor is an unconstrained component and hence it needs residual inertia relief attachment
modes in place of residual attachment modes.

Inertia relief modes are obtained by applying to a body an equilibrated load system {fe}, which consists of
the originally specified force vector {f} equilibrated by the rigid body d’Alembert force vector ½m�2f €urg, where
{ur} is the rigid body motion due to {f}. The rigid body modes are obtained from the eigenvalue analysis of the
unconstrained sub-rotor system and are normalized as

Wr½ �
T m2
� �

Wr½ � ¼ I rr½ �. (29)

The equilibrated force is then obtained as

f
� �

e
¼ f
� �
� m2
� �

€urf g ¼ P½ � f
� �

; P½ � ¼ I½ � � m½ � Wr½ � Wr½ �
T. (30)

Attachment modes ½Ŵa� relative to the R constraints then can be defined as

k2
ww

� �
k2

wr

� �
k2

wa

� �
k2

rw

� �
k2

rr

� �
k2

ra

� �
k2

aw

� �
k2

ar

� �
k2

aa

� �
2
664

3
775

Ŵwa

h i
0ra½ �

Ŵaa

h i
8>>><
>>>:

9>>>=
>>>;
¼

P2
ww

� �
P2

wr

� �
P2

wa

� �
P2

rw

� �
P2

rr

� �
P2

ra

� �
P2

aw

� �
P2

ar

� �
P2

aa

� �
2
664

3
775

0wa½ �

0ra½ �

Iaa½ �

8><
>:

9>=
>; ¼ P2

� �
f
� �

. (31)

Since the loads are equilibrated, there are no reactions at the R constraints. The rigid body modes are removed
from Ŵa by setting

Wa½ � ¼ Ŵa

h i
þ Wr½ �Cr; Wr½ �

T m2
� �

Wa½ � ¼ 0½ �. (32)

This will be satisfied if

Wa½ � ¼ P2
� �T

Ŵa

h i
¼ P2

� �T
E½ � P2
� �	 


Fa½ �; E½ � ¼

gww

� �
0½ � gwa

� �
0½ � 0½ � 0½ �

gaw

� �
0 gaa

� �
2
64

3
75; F a½ � ¼

0wa½ �

0ra½ �

Iaa½ �

2
64

3
75. (33)
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However, if a complete set of free-interface modes were to be supplemented by attachment modes, the latter
would be linearly dependent on the former and as such there is necessity to establish the attachment and
normal modes as a set of linearly independent modes to satisfy the component synthesis process. This can be
established as follows. Let the elastic normal modes be separated into kept modes [Gk] and deleted modes [Gd].
Then the elastic flexibility matrix is given by

Ee½ � ¼ Ek½ � þ Ed½ � ¼ P½ �T E½ � P½ � ¼ Ce½ � Lee½ �
T Ce½ �

T
¼ Ck½ � Lkk½ �

�1 Ck½ �
T
þ Cd½ � Ldd½ �

�1 Cd½ �
T. (34)

From the above equation one can write as follows for the inertia relief modes:

Ed½ � ¼ P½ �T E½ � P½ � � Uk½ � Lkk½ �
�1 Uk½ �

T ; Wd½ � ¼ Ed½ � Fa½ �. (35)

The displacement transformation equation is now expressed in partitioned form as

u2
i

� �
u2

j

n o
8<
:

9=
; ¼

Cik Wid

Cjk Wjd

" #
p2

k

p2
d

( )
; u2
� �

¼ t2
� �

p2
� �

. (36)

The reduced sub-rotor 2 matrices are then given by

k2s
� �

¼ t2
� �T

k2
� �

t2
� �

; m2s
� �

¼ t2
� �T

m2
� �

t2
� �

; g2s
� �

¼ t2
� �T

g2
� �

t2
� �

. (37)

2.3. Synthesis of sub-rotors

The constraint eqation at the joining of the two rotors is that u1
j

n o
¼ u2

j

n o
. From Eq. (27) and (36), one

obtains

u1
j

n o
¼ p1

j

n o
; u2

j

n o
¼ Cjk

� �
p2

k

� �
þ Wjd

� �
p2

d

� �
. (38)

From the above equation and the constraint equation, u1
j

n o
¼ u2

j

n o
the following expression can be derived:

p2
d

� �
¼ Wjd

� ��1
� Wjd

� ��1
Cjk

� �h i p1
j

p2
k

( )
. (39)

The vector {p} is further partitioned into independent and dependent coordinates, so that the dependent
coordinates can be eliminated in the final formulation, leading to

Cdl Cdd

� �
p1

i

� �
p1

j

n o
p2

k

� �

8>>><
>>>:

9>>>=
>>>;

p2
d

� �

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼ 0f g; Cdl½ � ¼ 0½ � Wjd

� ��1
� Wjd

� ��1
Cjk

� �h i
; Cdd½ � ¼ � I½ �. (40)

The final selection matrix [S] is given by

S½ � ¼

I½ � 0 0

0½ � I½ � 0½ �

0½ � 0½ � I½ �

0½ � Wjd

� ��1
� Wjd

� ��1
Cjk

� �

2
66664

3
77775. (41)

Rearranging sub-rotor 1 and sub-rotor 2 matrices leads to the form

K½ � ¼
k1
� �

0

0 k2
� �

" #
; M½ � ¼

m1
� �

0

0 m2
� �

" #
; G½ � ¼

g1
� �

0

0 g2
� �

" #
. (42)
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The final reduced system stiffness, mass and gyroscopic matrices are given by

KS½ � ¼ S½ �T K½ � S½ �; MS½ � ¼ S½ �T M½ � S½ �; GS½ � ¼ S½ �T G½ � S½ �. (43)

In the next section two different rotor systems are analyzed using the procedure described above.

3. Results and discussion

The efficacy and superiority of the present method is demonstrated with two example rotors. The first rotor
is of a cantilever type with a heavy disc fixed at its free end and the other end is supported on bearings, which is
treated as a fixed support as shown in Fig. 1.

The heavy disc at the free end is used to generate considerable gyroscopic moments, so as to study its
influence on the modal superposition method, in which the modal or transformation matrix, used to transform
the system from physical to modal coordinates (with necessary truncation) has been evaluated without
considering the gyroscopic matrix. This is to be compared with modal superposition method including the
gyroscopic matrix. The second rotor is a typical twin-spool aero-engine rotor model, comprising lower
pressure (LP) and high pressure (HP) spools rotating coaxially at different speeds with a speed ratio (HP/LP)
of 1.5 and is shown in Fig. 2.
(b)

(a)

(c)

Fig. 1. Cantilever rotor model with total length of 2m, the components, (a) full model, (b) component-1 with junction free and (c)

component-2 with left junction fixed.

(a) (b) (c)

Fig. 2. A twin-spool aero-engine rotor model: (a) full schematic model, (b) LP rotor with junction fixed and (c) HP rotor with junction

free.
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Table 1

Comparison of whirl frequencies, in rad/s, at a rotor speed of 100,000 rev/min for the cantilever rotor shown in Fig. 1

Mode Full FEM Pseudo modal Error % Meirovitch Error %

no. (40 modes) (20 modes) (20 modes)

�1 1.3651e1 1.3651e1 6.8965e-4 1.3651e1 1.5858e-10

1 5.5263e1 5.5263e1 5.0555e-4 5.5263e1 4.7788e-9

�2 9.0467e1 9.0469e1 1.6066e-3 9.0467e1 5.5916e-9

2 4.1057e2 4.1057e2 1.1802e-3 4.1057e2 3.5137e-8

�3 4.7822e2 4.7823e2 2.0206e-3 4.7822e2 3.2210e-8

3 1.0868e3 1.0868e3 1.4802e-3 1.0868e3 6.2556e-8

�4 1.1908e3 1.1908e3 1.9335e-3 1.1908e3 6.7419e-8

4 2.0945e3 2.0945e3 1.3394e-3 2.0945e3 1.3406e-8

�5 2.2517e3 2.2518e3 2.3666e-3 2.2517e3 1.8350e-8

5 3.4344e3 3.4344e3 2.0585e-3 3.4344e3 9.4634e-9

�6 3.6635e3 3.6635e3 1.9298e-3 3.6635e3 1.2403e-8

6 5.1113e3 5.1114e3 1.8828e-3 5.1113e3 3.7910e-9

�7 5.4316e3 5.4317e3 2.7530e-3 5.4316e3 4.4814e-9

7 7.1337e3 7.1340e3 4.1506e-3 7.1337e3 5.0795e-9

�8 7.5657e3 7.5658e3 2.0043e-3 7.5657e3 5.8672e-9

8 9.5123e3 9.5128e3 5.5574e-3 9.5123e3 1.9828e-9

�9 1.0078e4 1.0079e4 3.5874e-3 1.0078e4 2.3536e-9

9 1.2240e4 1.2243e4 2.2721e-2 1.2240e4 1.0426e-7

�10 1.2968e4 1.2968e4 2.7821e-3 1.2968e4 1.0853e-7

10 1.5117e4 2.0155e4 3.3329e1 1.5117e4 4.6964e-9

Fig. 3. Whirl frequency analysis of cantilever rotor with pseudo-modal and Meirovitch [8] method based calculation.
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The first rotor has been analyzed for whirl speed using a full rotor model based on the FEM [9]. Beam
elements with 4 dof at each node are used in the finite element formulation; there are a total of ten elements
with 40 dof. This provides the bench mark for comparison with backward and forward whirl frequencies
obtained using the CMS methods. The mass of the disc is 10 kg, the inside and outside diameters of the rotor
are 25 and 50mm, respectively, the polar moment of inertia and diametral moment of inertia of the disc are 0.2
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Table 2

Comparative result of whirl frequencies, in rad/s, at a rotor speed of 50,000 rev/min for cantilever rotor (C–B, Craig and Bampton C–C,

Craig and Chang)

Mode Full FEM Present % Error C–B % Error C–C % Error

(40 dof) (10+10) (10+10) (10+10)

�1 22 22 0 22 0 22 0

1 50 50 0 50 0 50 0

�2 118 118 0 118 0 118 0

2 395 395 0 395 0 396 0.252

�3 505 505 0 505 0 507 0.394

3 1074 1074 0 1074 0 1075 0.093

�4 1207 1207 0 1207 0 1209 0.165

4 2087 2087 0 2088 0.048 2079 0.384

�5 2250 2250 0 2251 0.044 2246 0.178

5 3433 3433 0 3435 0.058 3426 0.204

�6 3640 3640 0 3642 0.055 3630 0.275

6 5111 5113 0.039 5117 0.117 5157 0.892

�7 5382 5384 0.037 5389 0.130 5423 0.756

7 7106 7109 0.042 7112 0.084 7520 5.505

�8 7486 7489 0.040 7502 0.213 7768 3.630

8 9283 9292 0.090 9467 1.943 10,039 7.530

�9 9964 9977 0.130 10,068 1.033 10,915 8.712

9 10,807 10,820 0.120 10,902 0.871 11,162 3.180

�10 12,743 12,788 0.351 13,625 6.473 15,282 16.614

10 12,814 12,839 0.195 13,918 7.932 15,740 18.590

Fig. 4. Whirl frequency analysis of cantilever rotor with 30% of component modes (C–B, Craig–Bampton, C–C, Craig–Chang).
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and 0.1 kgm2, respectively. The results obtained are given in Table 1 and Fig. 3. It is observed from these
results that whirl frequencies obtained using modal superposition method without the gyroscopic matrix
(termed as pseudo-modal n the table) and the Meirovitch method [8] with gyroscopic matrix compare very well
with the FEM result. To establish the effect of leaving out the gyroscopic matrix, a case was studied with a
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Fig. 5. Whirl frequency analysis of cantilever rotor with 50% component modes.

Fig. 6. Undamped unbalance response of cantilever rotor at disc end with 50% of the modes included.
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very high spin speed of 100,000 rev/min. It can be seen from Table 1 that only for the 10th forward mode
significant error occurs. For lower speeds, the errors occur only at higher modes. Hence, one can neglect the
gyroscopic matrix while forming the truncation set. Hence one can adopt a modal matrix based on inertia and
stiffness matrix to truncate the gyroscopic matrix.

The cantilever rotor has been divided into two sub-rotors (components each with 20 dof) as shown in Fig. 1
and solved for whirl frequency and unbalance response analysis using fixed-free (present formulation),
fixed–fixed (Craig–Bampton) and free–free (Craig–Chang) CMS methods for various levels of modal
truncation. The results obtained are compared with a full order FEM. Table 2 gives the comparative results
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Fig. 7. Undamped unbalance response of cantilever rotor at disc end with 80% of the modes included.

Table 3

Data for the twin spool-rotor of Fig. 2 (r ¼ 7840 kg/m3, E ¼ 2.07E11N/m2, IP ¼ 2ID)

Node Axial distance

(mm)

Inner diameter

(mm)

Outer diameter

(mm)

Bearing Disc

Stiffness (N/m)

Kxx ¼ Kyy

Damping

(Ns/m)

Cxx ¼ Cyy

Mass (kg) IP (kg/mm2)

1 0 30.4 0 2795E6 5260

2 76.2 30.4 0 4.904 0.02712

3 254 30.4 0

4 406.4 30.4 0 8.7598E6

5 457.2 304 0 4.203 0.02034

6 508 30.4 0 17.519E6 3507

7 152.4 50.8 38.1 17.519E6 3507

8 203.2 50.8 38.1 3.327 0.01469

9 355.6 50.8 38.1 2.227 0.09720

10 406.4 50.8 38.1 8.7598E6
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with 50% modal truncation at component level. The present formulation shows excellent convergence and
accuracy, when compared to Craig–Bampton or Craig–Chang methods. Campbell diagrams (Figs. 3 and 4)
are plotted until rotor speeds of 50,000 rev/min, which include first six backward and forward whirl modes. In
Fig. 4, six modes are used for each component (30% modes), while in Fig. 5 the results are for 10 modes for
each component (50% modes). It can be observed from these figures that the present method is as good as
Craig–Bampton method and far superior to Craig–Chang method as far as whirl frequency analysis is
concerned. The present method, it must be emphasized, has the advantage of being easily adapted to carry out
non linear analysis unlike the Craig–Bampton method.

Unbalance response analysis is carried out on the first rotor using full model FEM and the results of this is
compared with the results obtained using all the above CMS methods with various levels of modal truncation
at the component level. The comparisons are given in the Figs. 6 and 7. It can be observed from these results
that the present method gives better results with better convergence (as the percentage of modes included is
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Fig. 8. FEM model of twin-spool aero-engine for fixed–free CMS.

Fig. 9. Whirl frequency analysis of twin-spool rotor model (Fig. 2) with 12 LP and eight HP modes included.
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increased). This shows that the present formulation is better for both whirl frequency analysis (free vibration)
and forced response analysis.

The second rotor example has also been analyzed for both whirl frequency and unbalance response
analysis with damping included. This twin-spool rotor is divided into LP and HP components as shown in
Fig. 2. Table 3 shows the rotor properties used in the analysis while Fig. 8 shows the FEM model. The LP
rotor has 24 dof (six elements) and the HP rotor 16 DOF (four elements). This rotor is first analyzed for whirl
frequency analysis using full order FEM and these results are compared with those obtained from the present
formulation, Craig–Bampton and Li–Gunter CMS methods with various levels of modal truncation at the
component level. These results are given in Figs. 9 and 10, which show that both the present formulation and
the Craig–Bampton method give accurate results while the Li–Gunter method is not as accurate. The
convergence of whirl frequencies at speeds of 20,000 and 30,000 rev/min using the present method for various
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Fig. 10. Whirl frequency analysis of twin-spool rotor model (Fig. 2) with eight LP and six HP modes included.

Table 4

Convergence of rotor whirl frequencies, in rad/s, at a rotor speed 20,000 rev/min for the twin-spool aero-engine example

Mode LP ¼ 8 modes LP ¼ 14 modes LP ¼ 24 modes FEM % Error

no. HP ¼ 6 modes HP ¼ 10 modes HP ¼ 10 modes 40 modes with (8,6)

l�1 3.36995E2 3.45326E2 3.45326E2 3.44879E2 2,286

l1 9.79896E2 9.75388E2 9.75387E2 9.74563E2 0.547

l�2 1.16110E3 1.14668E3 1.44668E3 1.14721E3 1.210

l2 1.84173E3 1.83941E3 1.83941E3 1.83961E3 0.115

l�3 1.62705E3 1.62368E3 1.62368E3 1.62351E3 0.218

l3 2.37694E3 2.41569E3 2.41569E3 2.41579E3 1.608

l�4 2.41830E3 2.41865E3 2.41864E3 2.41853E3 0.009

l4 4.13771E3 4.14242E3 4.14242E3 4.15019E3 0.300

l�5 2.46954E3 2.43579E3 2.43573E3 2.43571E3 1.388

l5 4.33272E3 4.31630E3 4.31630E3 4.30914E3 0.547

Table 5

Convergence of rotor whirl frequencies, in rad/s, at a rotor speed of 30,000 rev/min for the twin-spool aero-engine example

Mode LP ¼ 8 modes LP ¼ 14 modes LP ¼ 24 modes FEM % Error

no. HP ¼ 6 modes HP ¼ 10 modes HP ¼ 10 modes 40 modes with (8,6)

l�1 2.55790E2 2.54243E2 2.54243E2 2.53847E2 0.765

l1 1.28741E3 1.25973E3 1.25973E3 1.26031E3 2.150

l�2 7.96951E2 7.89060E2 7.89055E2 7.88578E2 1.061

l2 1.94705E3 1.93835E3 1.93835E3 1.93861E3 0.435

l�3 1.57455E3 1.56345E3 1.56345E3 1.56315E3 0.729

l3 2.45364E3 2.44366E3 2.44366E3 2.44382E3 0.401

l�4 2.02592E3 2.06325E3 2.06316E3 2.06304E3 1.799

l4 4.90102E3 4.73541E3 4.73539E3 4.73464E3 3.514

l�5 2.42955E3 2.41056E3 2.41056E3 2.41052E3 0.789

l5 4.99523E3 4.95788E3 4.95785E3 4.97039E3 0.499
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Fig. 11. Damped unbalance response of twin-spool rotor example at the first disc using 12 LP and eight HP modes.

Fig. 12. Force on bearing four of the twin-spool rotor using 12 LP and eight HP modes.
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numbers of truncated modes is presented in Tables 4 and 5. This demonstrates that the present formulation is
quite accurate. Further, damped unbalance response of this rotor at two locations have been compared with
full order FEM. Fig. 11 shows the response of disc #1 while the bearing force on the front bearing has also
been calculated in Fig. 12 from the displacements. As expected, the errors show up for the higher modes,
which can be corrected by using more component modes.
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4. Conclusions

In this paper, a hybrid fixed–free interface method using component modes obtained neglecting the
gyroscopic matrix has been developed. The model has been applied to two rotor examples and results
compared with fixed–fixed and free–free methods. It has been clearly demonstrated that the present method
has much better accuracy and converges better than the traditional CMS methods. Further, there is a choice
for the analyst in deciding which junction is to be fixed and which one is to be free, in order to achieve the full
potential of this method. In general, the component, which has a minimum number of junction coordinates
when compared to interior coordinates is often the best choice to be fixed and the component, which has
considerable number of junction coordinates when compared to interior coordinates, is to be kept free. The
inherent advantage of this method is that the necessity of treating rigid body modes is eliminated by proper
choice of junction coordinate treatment. In this method, all the junction coordinates are kept as physical
coordinates, which has advantages for the nonlinear analysis when squeeze film dampers are used.
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